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ABSTRACT

Based upon the generalized mode-analysis
technique, a rigorous numerical model for simulating
'cold'-tests of millimeter wave coupled-cavity slow-
wave circuits is developed. This model provides not
only the dispersion property but also the 'cold' RF field
distribution in the structure. The result is compared
with that obtained by Curnow's equivalent circuit.

I. INTRODUCTION

An important characteristic in the design of slow-
wave structures(SWS) for travelling-wave tubes(TWT's) is
the dispersion property or kod-Bd diagram. This diagram
provides the necessary information about the phase and
group velocities of different space harmonics and about
the bandwidth of the SWS. Such characteristic is normatly
achieved from the 'cold'-lest measurements, which are
made on resonant sections of the structure with standard
techniques such as perturbation method [1]. However, a
series of 'cold'-test measurements has to be performmed in
order to investigate the effects of changes in structure
dimensions on the tube performance, which is time-
consuming and expensive. On the other hand, the cold
tests and other simulatution models so far [2-6] cannot
provide the information about the RF field distribution in
the SWS, which is important for investigating the beam-
wave interaction mechanism. Direct calculation of the RF
field patterns is difficult because of the complexity of the
shapes involved [2-4]. It is highly desirable to develop
some analytic techniques to. predict the properties of the
SWS without repeating the expensive cold tests, but from
economical numerical simulations. In this connection a
field analysis model is developed, which is based on
efficient mode expansions in each guide considered and
matching them at the waveguide junctions in terms of
generalized mode-matching technique [7-8]. The model

can therefore provide not only the dispersion property of
the SWS but also the information about the 'cold' RF field
in the cavity. The result of this model for a typical
structure is compared with that obtained by the equivalent
circuit method. The good agreement is shown. The RF
field patterns at abrupt junctions, being of the most
difficulty of computations, are drawn. The convergence
and consistence of the field patterns demonstrated the
accuracy of the numerical solutions.

II. SCATTERING PARAMETERS OF
PERIODIC UNIT
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Fig.1 Sapce harmonic coupled-cavity slow-wave
structure and its dimensions.

The coupled-cavity structure under consideration
is shown schematically in Fig.1, which can be divided into
several individual waveguides.  The end view of the
kidney-like coupling slot resembles a sector segment,
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which is thereby simplified to a sector waveguide. The

angle of the sector is chosen to give the same area as the

slot aperture, illustrated in Fig.2. Then, g o +.%~ . The
2

coupled-cavity thus consists of three types of individual
cylindrical waveguides, i.e., circular-, coaxial-, and sector-
waveguides, whose eigenmodes can be found out by
solving Helmholtz equation combined with boundary
conditions.

Fig.2 Coupling slot and sector waveguide.

The abrupt junctions in the coupled-cavity are
normally concerned with two waveguides except for a
kind of multiguide junctions between a circular waveguide
and a coaxial waveguide with hollow inner conductor. The
electromagnetic scattering problem at waveguide junctions
can be solved by means of the generalized scattering
matrix of the mode-matching technique [7-8]. Considering
a typical multiguide junction, the so called k-furcated
guide discontinuity, the transverse electric and magnetic
fields can be expanded as the following matrix equations

BV =[e]-([A0] [a0]+ [A0] - [50]),

R = [00]([A0] [a0] - (0] [400]),

(D

where the superscripts ‘i denote the ith guide, i= [, 1, 2,--,
k; la] and [b] are column vectors with elements of
complex amplitude a,,, of the mth incident mode and b,, of
the mth scattered mode, respectively; M means the number
of expansion modes, m= 1, 2,--, M; [A] is an (MxM)
diagonal matrix with elements exp(-¥,2), ¥,= &, + By,
means propagation constant of the mth mode; [e], [h] are
m ’h
Considering the continuity of transverse electric and
magnetic fields on the junction plane z=0, we obtain a
matrix representation of boundary conditions:

[a‘”]+[b“’]=[R]([b“’)]+ a“”])
(5] -[a )= a1[a” ][5,

row eigenmode-vectors with elements €

m

@)

where the detailed definitions of the matrices in (2) are
given in [8]. Considering the multiguide junction as a
generalized two-port discontinuity between guides 'I' and
Ir ( =1, 2, k, ), the relations among the incident and
scattered modes can be expressed by the scattering matrix
representation as

{bw J |:Sll Su:‘ {a“) }
b Szx Szz a® , 3)
_{[I]—[D] [DI[R] } {a"’]

[BID] [1]-[B][S.]] [a®
where the maltrix [D] is defined as
[D]=2([1]+[R][B])"', an (M(D x M()) matrix. If the
section 'IT' contains only one waveguide, it is referred to as
two-port discontinuity and the scattering matrix in (3)
degenerates into the expression for two-port junction [7].
The combined S-matrix for cascaded discontinuities can
be obtained by using equation (12) for a two-port junction
in {7] and equation (18) for a multiguide junction in [8].
Thus the individual scattering matrices can be cascaded,
one by one for each abrupt junction and waveguide line.
Each step in the procedure can be examined by plotting .
the field-patterns and checking the boundary conditions
required. It is also possible to give the detailed information
about RF field at any position of the structure, provided
the operation mode is known, which gains an advantage
over other simulation models. For the multiguide junction
related 0 a coaxial waveguide and two circular
waveguides, the scattering parameters can be found out.
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Fig.3 Transverse field component E¢ along r-axis at
both sides of a circular-coaxial-circular junction, with
TM21/ESM/?»=5a incidence from '1'. CPU time 2.5
min with 40 modes used in each guide. '1": solid,
a;=4a, '2': dash dot, a,=3a, b,=2a,'3": dash az=a.
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(a) Reflection Coefficient

() Coupling Coefficient

(c) Transmission Coefficient

Fig.4 Convergence of S-parameters versus the number of modes used in guide '1' for a circular-coaxial-circular junction,
with TE{; incidence from 'l'. Mode ratios used: M(l):M(Z)zM(3)=1:lzl(solid), 1.5:1.2:1(dot), 4:3:1(dash dot). Guide

dimensions: '1': a;=0.8}, 2': @,=0.6), b,=0.4%, '3': a;=0.2A.

In order to check the accuracy of the boundary conditions
required by the 3-guide junction, the transverse field
component, taking Eq, as an example, are drawn in Fig.3,
in which both the continuity and convergence of the field
amplitudes are presented. Fig.4 gives the numerical results
for reflection coefficient Sq1 in guide 'l', transmission
coefficient S5 from guide 1" to guide '3, and coupling
coefficient Sp3 between guide '2' and guide "3’ computed
with different mode ratios. It shows a good convergence
for all the three mode ratios, as 20 or more eigenmodes are
used in guide '1'.

By cascading all the individual S-matrices in a
periodic unit, in which eight abrupt junctions and eleven
individual waveguides are involved, the overall S-matrix
S() can be obtained. Thus the incident and scattered
modes of nth and (n+1)th terminal planes of the periodc

structure are related by
lln
uﬂ,+l

e H

H1. DISPERSION EQUATION
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Applying the Floquet's theorem to the periodic
SWS, the incident and scattered waves at the nth and
(n+1)th terminal planes can also be related by
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[ﬁixH (0] ][ J

where [I] is the unity matrix and 4 is the length of a
periodic unit. Combining the matrix equations (4) and (5),
one gets a matrix eigenvalue equation for the propagation

constant 'y :
St ~ [ 2, }
52“1 LS

A nontrivial solution exists only if the determinant
vanishes:

[st1]

[si]- 7701

(0]

s)
1]

LS|

(1]
[0]

[o]

1]

u
S12
S

(6)

0

u i
[512] —"[1] -0

Q)
[s3.]

The eigenvalue problem involved in the dispersion
equation (6) or (7), which contains only the operation
frequency and structure dimensions as variables, can be
solved by using some standard routines from the
programin libraries such as the NAG library. The basic
dispersion property of the SWS can thus be plotted by
running the frequency as a variable. In order (o0 compare
the results obtained by field analysis with that from



equivalent circuit method, Curnow's lumped element
equivalent circuit for coupled-cavity circuit [2] is
employed. The circuit parameters have been related to the
structure dimenstions by means of Carter's empirical
formulations except to corrections for equation (2) in [4].
The coupling factor k, defined as the fraction of the

circulating current of the cavity intercepted by a slot,

should be that ¢=-% 4 T where a is the slot sector

2 4R

angle illustrated in Fig.2. For a typical structure, Fig.6
shows the numerical results of kpl-BL diagramm obtained
by the field analysis (solid line) and the equivalent circuit
(dashed line). The results obtained by both methods agree
well with each other. For field-analysis model, the whole
procedure to calculate one frequency can be carried out on
a Convex computer within 10min of CPU time for 60
eigenmode wused in each guide.Another important
parameter for TWT simulations is the coupling
impedance, which represents the interaction intensity
between the RF circuit field and the electron stream.
According to the field expansion discussed above, the
coupling impedance may be expressed as
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Fig.5 Dispersion property of a coupled-cavity cavity
slow-wave structure obtained by ficld-analysis with 60
modes used in each waveguide (solid line) and
equivalent circuit method (dashed line). Structure
dimensions: @=2.55mm, b=3.2mm, ¢=7.63mm,
r=1.4mm, 0=2.27, R=5.8mm, G=2.84mm, H=6.44mm,
L=8.84mm.

where a,, and by, are the expansion coefficients for
forward and backward TM waves, P,, is the normalized
coefficient of the nth mode. Therefore, the coupling
impedance at any position of a coupled-cavity SWS can be
evaluated by the field analysis model.

IV. CONCLUSIONS

Based on the generalized mode-matching
technique, a field analysis model for simulating 'cold'-test
measurements of millimeter wave coupled-cavity RF
circuits has been developed, which provides not only the
dispersion and impedance properties of the periodic slow-
wave structure but also the information about the 'cold’ RF
field in the cavity. The emphasis of the current work has
been on efficiently simulating the frequency-phase
characteristics, although a broader range of applications is
envisioned. The results for a typical structure agreed with
those obtained by the equivalent circuit method. With
appropriate modifications, the model can be used
effectively as design means for coupled-cavity TWT's.
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