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ABSTRACT

Based upon the generalized mode-analysis

technique, a rigorous numerical model for simulating

‘cold ‘-tests of millimeter wave coupled-cavity slow-

wave circuits is developed. This model provides not

only the dispersion property but also the ‘cold’ RF field

distribution in the structure. The result is compared

with that obtained by Currrow’s equivalent circuit.

I. INTRODUCTION

An important characteristic in the design of slow-

wave structures(SWS) for travelliug-wave tubes(TWT’s) is

the dispersion property or kod-~d diagram. This diagram

provides the necessary information about the phase and

group velocities of different space harmonics and about

the bandwiddr of tire SWS. Such characteristic is normally

achieved from the ‘cold’-lesl measurements, which are

made on resonant sections of the structure with standard

techniques such as perturbation method [1]. However, a

series of ‘cold-test measurements has to be performed in

order to investigate the effects of changes in structure

dimensions on the tube performance, which is time-

consuming and expensive. On the other hand, the cold

tests and other simulatution models so far [2-6] cannot

provide the information about the RF field distribution in

the SWS, which is important for investigating the bearn-

wave interaction mechanism. Direct calculation of the RF

field patterns is difficult because of the complexity of the

shapes involved [2-4]. It is highly desirable to develop

some analytic techniques to predict the properties of the

SWS without repeating the expensive cold tests, but from

economical numerical simulations. In this connection a

field anaiysis modei is developed, which is based on

efficient mode expansions in each guide considered and

matching them at the waveguide junctions in terms of
generalized mode.matching technique [7-8]. The model

can therefore provide not only the dispersion property of

the SWS but also the information about the ‘cold’ RF field

in the cavity. The result of this model for a typicai

structure is compared with that obtained by the equivalent

circuit method. The good agreement is shown. The RF
field patterns at abrupt junctions, being of the most

difficulty of computations, are drawn. The convergence

and consistence of the field patterns demonstrated the

accuracy of the numericai solutions.

II. SCATTERING PARAMETERS OF

PERIODIC UNIT

Fig.1 Sapce harmonic coupled-cavity siow-wave

structure and its dimensions.

The coupled-cavity structure under consideration

is shown schematically y in Fig. 1, which can be divided into

several individual waveguides. The end view of the

kidney-like coupling SIOL resembles a sector segment,
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which is thereby simplified to a sector waveguide. The

angle of the sector is chosen to give the same area as the

slot aperture, illustrated in F1g.2. Then, o = ~ + _!fL . The
2R

coupled-cavity thus consists of three types of individual

cylindrical waveguides, i.e., circular-, coaxial-, and sector-

waveguides, whose eigenmodes can be found out by

solving Hehnholtz equation combined with boundary

conditions,

Fig.2 Coupling slot and sector waveguide.

The abrupt junctions in the coupled-cavity are

normatly concerned with two waveguides except for a

kind of multiguide junctions between a circular waveguide

and a coaxial waveguide with hollow inner conductor. The

electromagnetic scattering problem at waveguide j unctions

can be solved by means of the geueratized scattering

matrix of the mode-matching technique [7-8]. Considering

a typical mttltiguide junction, the so called k-furcated

guide discontinuity, the transverse electric and magnetic

fields can be expanded as the following matrix equations

I
Et’) =[e(i)].([k(i)].[a(i)]+[k(i)]-’ .[6(1)]),

(1)

~$’) =[h(~)] .([MO]. [a(i) ]-[~(i)]-l .[~(i)],),

where the superscripts ‘i’ denote the ith guide, i= f, 1, 2,...,

k; [a] and [b] are column vectors with elements of

complex amplitude am of the rnth incident mode and bvl of

the rnth scattered mode, respectively; M means the number

of expansion modes, m= 1, 2,..., M; [1] is an (Mxlf)

diagonal matrix with elements exp(-y~), ym= txm + &

means propagation constant of the mth mode; [e], [h] are

row eigemnode-vectors with elements znL>hnL

Considering the continuity of transverse electric and

magnetic iields on the junction plane z=O, we obtain a

matrix representation of boundary conditions:

[

[a’’)]+[b(’)]=[R]([b(’’)]+[a)]))])

[W]+(J)] = [B]([a(’)]-[w]).
(2)

where the detailed definitions of the matrices in (2) are

given in [8]. Considering the multiguide junction as a

generalized two-port discontinuity between guides ‘1’ and

‘[i’ ( = 1, 2,..., k, ), the relations among the incident and

scattered modes can be expressed by the scattering matrix

representation as

[:J=[::H“[$l (3)

[

_ [1]-[D] [D][R] ‘1[1
~(l)- [B][D] [l]-[B][S1, ] “ a(”)

where ,.

[D] = 2([I~~[R][~~! an (~~0 x:(0) fl~~ If ti~

section ‘Ir con tins only one waveguide, it is referred to as

two-port discontinuity and the scattering matrix in (3)

degenerates into the expression for two-port junction [7].

The combined S-matrix for cascaded discontinuities can

be obtained by using equation (12) for a two-port junction

in [7] and equation (18) for a multiguide junction in [8].

Thus the individual scattering matrices can be cascaded,

one by one for each abrupt junction and waveguide line.

Each step in the procedure can be examined by plotting

the field-patterns and checking the boundary conditions

required. It is atso possible to give the detailed information

about RF field at any position of the structure, provided

the operation mode is known, which gains an advantage

over other simulation models. For the multiguide junction

related to a coaxial waveguide and two circular

wavegu ides, the scattering parameters can be found out.
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Fig.3 Transverse field component E+ along r-axis at

both sides of a circular-coaxial-circular junction, with

TM21ESiWk=5a incidence from ‘l’. CPU time 2.5

min with 40 modes used in each guide. ‘ 1‘: solid,

a1=4a, ‘2’: dash dot, a2=3a, b2=2u, ‘3’: dash a3=a.
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Fig.4 Convergence of S-parameters versus the number of modes used in guide ‘I’ for a circular-coaxial-circular junction,

with TE1, incidence from ‘l’. Mode ratios usid: M(1): M(2) :M(3)=1: l:l(solid), 1.5:1.2: I(dot), 4:3:l(dash dot). Guide

dimensions: ‘1’: al=0.81., ‘2’: U2=0.6k, b2=0.4k, ‘3’: ~3=0.2k.

[n order to check dte accuracy of the boundary conditions

required by the 3-guide junction, the tram verse field

component, taking EO as an example, are drawn in Flg.3,

in which both the continuity and convergence of the field

amplitudes are presented. Flg.4 gives the numericat results

for reflection coefficient S11 in guide ‘l’, transmission

coefficient S13 from guide ‘1’ to guide ‘3’, and coupling

coefficient S23 between guide ‘2’ and guide ‘3’ computed

with different mode ratios. It shows a good convergence

for all the three mode ratios, as 20 or more eigenrnodes are

used in guide ‘l’.

By cascading all the individual S-matrices in a

periodic tmi~ in which eight abrupt junctions and eleven

individual waveguides are involved, the overall S-matrix

S(u) can be obtained. Thus the incidenl and scauered

modes of rrth and (rr+l)th terminal planes of the periodc

structure are related by

(4)

111. DISPERSION EQUATION

Applying the Ftoquet’s theorem to the periodic

SWS, the incident and scattered waves at the rrt.h and

(n+l)th terminal planes can also be related by

(5)

where [1] is the unity matrix and d is the length of a

periodic unit. Combining the matrix equations (4) and (5),

one gets a matrix eigenva]ue equation for the propagation

Constm]t y :

A nontrivial solution exists only if the determinant

vanishes:

(7)

The eigeuvalue prOb]eIn involved in the dispersion

equation (6) or (7)7 which con~ns only the operation
frequency and structure dimensions as variables, can be

solved by using some standard routines from the

programm libraries such as the NAG library. The basic

dispersion property of’ the SWS can thus be plotted by

running the frequency as a variable, In order to compare

the results obtained by field analysis with that from
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equivalent circuit method, Cumow’s lumped element

equivalent circuit for coupled-cavity circuit [2] is

employed. The circuit parameters have been related to the

structure dimensions by means of Carter’s empirical

formulations except to corrections for equation (2) in [4].

The coupling factor k, defined as the fraction of the

circulating current of the cavity intercepted by a slot,

should be that ~= ~ + ..-.!- , where ci is the slot sector
4R

angle illustrated in Fig.2. For a typicat structure, Fig.6

shows the numericat results of koL-~L diagramm obtained

by the field anafysis (solid line) and the equivalent circuit

(dashed line). The results obtained by both methods agree

well with each other. For field-analysis model, the whole

procedure to calculate one frequency can be carried out on

a Convex computer within 10min of CPU time for 60

eigenmode used in each guide. Another important

parameter for TWT simulations is the coupling

impedance, which represents the interaction intensity

between the RF circuit field and the electron stream.

According to the field expansion discussed above, the

coupling impedance may be expressed as
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Fig.5 Dispersion property of a coupled-cavity cavity

slow-wave structure obtained by field-analysis with 60

modes used in each waveguide (solid line) and

equivalent circuit method (dashed line). Structure
dimensions: a=2.55mm, b=3.2mm, c=7.63mm,

r=l.4mm, e=2.27, R=5.8mm, G=2.84mm, H=6.44mm,

L=8.84mm.

(8)

where ane and bne are the expansion coefficients fOr

forward and backward TM waves, Pne is the normalized

coefficient of the ntb mode. Therefore, the coupling

impedance at any position of a coupled-cavity SWS can be

evaluated by the field analysis model.

IV. CONCLUSIONS

Based on the generalized mode-matching

technique, a field auatysis model for simulating ‘cold’-test

measurements of millimeter wave coupled-~avity RF

circuits has been developed, which provides not only the

dispersion and impedance properties of the periodic slow-

wave structure but also the information about the ‘cold RF

field in the cavity. The emphasis of the current work has

been on efficiently simulating the frequency-phase

characteristics, although a broader range of applications is

envisioned. The results for a typical structure agreed with

those obtained by the equivalent circuit method. With

appropriate modifications, the model can be used

effectively as design means for coupled-cavity TWT’S.
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